Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Ecotoxicol Environ Saf ; 272: 116028, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38310824

RESUMEN

Extensive application of lead (Pb) brought about environmental pollution and toxic reactions of organisms. Selenium (Se) has the effect of antagonizing Pb poisoning in humans and animals. However, it is still unclear how Pb causes brainstem toxicity. In the present study, we wanted to investigate whether Se can alleviate Pb toxicity in chicken brainstems by reducing apoptosis. One hundred and eighty chickens were randomly divided into four groups, namely the control group, the Se group, the Pb group, and the Se/Pb group. Morphological examination, ultrastructural observation, relative mRNA expressions of genes on heat shock proteins (HSPs); selenoproteins; inflammatory cytokines; and apoptosis-related factors were investigated. The results showed that Pb exposure led to tissue damage and apoptosis in chicken brainstems. Furthermore, an atypical expression of HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90); selenoprotein family glutathione peroxidase (GPx) 1, GPx2, GPx3, and GPx4), thioredoxin reductases (Txnrd) (Txnrd1, Txnrd2, and Txnrd3), dio selenoprotein famliy (diodothyronine deiodinases (Dio)1, Dio2, and Dio3), as well as other selenoproteins (selenoprotein (Sel)T, SelK, SelS, SelH, SelM, SelU, SelI, SelO, Selpb, selenoprotein n1 (Sepn1), Sepp1, Sepx1, Sepw1, 15-kDa selenoprotein (Sep15), and selenophosphate synthetases 2 (SPS2)); inflammatory cytokines (Interleukin 2 (IL-2), IL-4, IL-6, IL-12ß, IL-17, and Interferon-γ (IFN-γ)); and apoptosis-related genes (B-cell lymphoma-2 (Bcl-2), tumor protein 53 (p53), Bcl-2 Associated X (Bax), Cytochrome c (Cyt c), and Caspase-3) were identified. An inflammatory reaction and apoptosis were induced in chicken brainstems after exposure to Pb. Se alleviated the abnormal expression of HSPs, selenoproteins, inflammatory cytokines, and apoptosis in brainstem tissues of chickens treated with Pb. The results indicated that HSPs, selenoproteins, inflammatory, and apoptosis were involved in Se-resisted Pb poisoning. Overall, Se had resistance effect against Pb poisoning, and can be act as an antidote for Pb poisoning in animals.


Asunto(s)
Selenio , Humanos , Animales , Selenio/farmacología , Pollos/metabolismo , Citocinas/genética , Plomo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Proto-Oncogénicas c-bcl-2
2.
Sci Total Environ ; 919: 170699, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325474

RESUMEN

During feeding process in intensive chicken farms, the prolonged exposure of chickens to elevated level of ammonia leads to substantial economic losses within poultry farming industry. Luteolin (Lut), known as its anti-inflammatory and antioxidant properties, possesses the ability to eliminate free radicals and enhance the activities of antioxidant enzymes, thus rendering it highly esteemed in production. The objective of this study was to examine the effects of Lut on antioxidant and anti-inflammatory responses of chicken splenic lymphocytes exposed to ammonia. In order to achieve this, we have replicated a protective model involving Lut against ammonia exposure in chicken splenic lymphocytes. The findings of the study indicated that Lut mitigated the elevation of lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) induced by ammonia poisoning. Additionally, Lut demonstrated an increase in the expression of antioxidant enzymes, namely superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Furthermore, Lut exhibited a protective effect on cell morphology and ultrastructure following exposure to ammonia. Moreover, Lut exhibited a reduction in the expression of heat shock proteins (HSPs) and inflammatory cytokines, which were found to be highly expressed in splenic lymphocytes after ammonia exposure. Additionally, Lut demonstrated the ability to inhibit the overexpression of pyroptosis-related genes and proteins (NLRP3 and Caspase-1) in splenic lymphocytes following ammonia exposure. Lut exerted an antioxidant effect on lymphocytes, counteracting elevated levels of oxidative stress following exposure to ammonia. Additionally, Lut had the potential to modulate the expression of HSPs, suppressed the inflammatory response subsequent to ammonia exposure, and influenced the expression of NLRP3 and Caspase-1, thereby mitigating pyroptosis induced by ammonia exposure. The exploration of this subject matter can elucidate the protective properties of Lut against NH4Cl-induced damage in chicken splenic lymphocytes, while also offer insights and experimental groundwork for the utilization of natural therapeutics in animal husbandry to prevent and treat ammonia-related conditions.


Asunto(s)
Antioxidantes , FN-kappa B , Animales , Antioxidantes/metabolismo , Caspasa 1/metabolismo , Caspasa 1/farmacología , Piroptosis , Luteolina/metabolismo , Luteolina/farmacología , Amoníaco/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Pollos/metabolismo , Estrés Oxidativo , Antiinflamatorios/metabolismo , Linfocitos
3.
Probiotics Antimicrob Proteins ; 16(2): 531-540, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36995549

RESUMEN

The yak has a unique physiological structure suited to life in anoxic and cold environments at high altitudes. The aim of this study was to isolate Bacillus species with good probiotic properties from yak feces. A series of tests were performed on the isolated Bacillus: 16S rRNA identification, antibacterial activity, tolerance to gastroenteric fluid, hydrophobicity, auto-aggregation, antibiotic sensitivity, growth performance, antioxidants, and immune indexes. A safe and harmless Bacillus pumilus DX24 strain with good survival rate, hydrophobicity, auto-aggregation, and antibacterial activity was identified in the yak feces. Feeding mice with Bacillus pumilus DX24 increased their daily weight gain, jejunal villus length, villi/Crypt ratio, blood IgG levels, and jejunum sIgA levels. This study confirmed the probiotic effects of Bacillus pumilus isolated from yak feces and provides the theoretical basis for the clinical application and development of new feed additives.


Asunto(s)
Bacillus pumilus , Bacillus , Probióticos , Bovinos , Animales , Ratones , Bacillus pumilus/genética , ARN Ribosómico 16S/genética , Antibacterianos/farmacología
4.
Future Microbiol ; 19: 131-140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994577

RESUMEN

Aim: This study explored the protective effect of Enterococcus faecium as a probiotic against Salmonella typhimurium infection. Materials & methods: The protective role of E. faecium against tissue damage by S. typhimurium infection and the expression of inflammatory cytokines and tight junction proteins were detected by histological observation, real-time quantitative PCR and immunohistochemical methods. Results: E. faecium demonstrated a regulatory function that affected the expression of Claudin-1 and enhanced tight junctions, suppressed the NF-κB/NLRP3/IL-1ß signaling pathway and reduced the release of IL-6, TNF-α, IFN-γ, TLR4 and MYD88 and inflammatory damage to tissues by S. typhimurium in the duodenum, cecum and colon of mice. Conclusion: E. faecium antagonized S. Typhimurium alleviating inflammatory injury in mice through the NF-κB/NLRP3/IL-1ß signaling pathway.


Asunto(s)
Enterococcus faecium , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Salmonella
5.
Can J Microbiol ; 70(4): 109-118, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134414

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) can cause intestinal inflammation and diarrhea in yaks, which has a negative impact on their economic value. In recent years, probiotics have gained increasing attention as a pure, natural, nontoxic, harmless, and residue-free additive. However, the underlying mechanisms by which probiotics safeguard against ETEC are not completely elucidated. This study aimed to investigate the protective effect of Enterococcus faecium (E. faecium) against ETEC infection in mice through oral gavage. Morphological changes were examined through light microscopy. The expressions of inflammatory cytokines (IL-1ß, IL-6, TNF-α, IL-10, NF-κB, and NLRP3), tight junction protein (ZO-1, Claudin-1), and pyroptosis (Caspase-1, Caspase-4, and gasdermin D (GSDMD)) were detected using immunohistochemistry and quantitative real-time PCR. The results indicate that ETEC infection triggers the activation of inflammation-related pathways (NF-κB) and NLRP3 inflammasome, leading to the expression of a large number of inflammatory cytokines. Additionally, the activation of NLRP3 leads to the release of GSDMD activation through Caspase-1, ultimately resulting in inflammatory injury and pyroptosis. Feeding mice E. faecium early resulted in an increase in the expression of tight junction protein, a reduction in inflammatory cytokines, and alleviation of inflammatory injury and pyroptosis in intestinal tissues. Our research indicates that E. faecium has the ability to antagonize ETEC and provide protection to the gastrointestinal mucosa in mice.


Asunto(s)
Enterococcus faecium , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Ratones , Animales , FN-kappa B/genética , Escherichia coli Enterotoxigénica/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Transducción de Señal , Citocinas/genética , Citocinas/metabolismo , Infecciones por Escherichia coli/prevención & control , Inflamación , Proteínas de Uniones Estrechas
6.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003277

RESUMEN

Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.


Asunto(s)
Hepatopatías , Células Madre Mesenquimatosas , Humanos , Vitamina A/metabolismo , Transcriptoma , Cirrosis Hepática/genética , Cirrosis Hepática/terapia , Cirrosis Hepática/inducido químicamente , Hígado/metabolismo , Hepatopatías/metabolismo , Obesidad/metabolismo , Ácidos y Sales Biliares/metabolismo , Células Madre Mesenquimatosas/patología
7.
Poult Sci ; 102(12): 103093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783192

RESUMEN

Ammonia poses a significant challenge in the contemporary intensive breeding industry, resulting in substantial economic losses. Despite this, there is a dearth of research investigating efficacious strategies to prevent ammonia poisoning in poultry. Consequently, the objective of this study was to investigate the molecular mechanisms through which Luteolin (Lut) safeguards mitochondria and restores equilibrium to energy metabolism disorders, thereby shielding chicken spleen lymphocytes from the detrimental effects of ammonia poisoning. Chicken spleen lymphocytes were categorized into 3 distinct groups: the control group, the ammonia group (with the addition of 1 mmol/L of ammonium chloride), and the Lut group (with the treatment of 0.5 µg/mL of Lut for 12 h followed by the addition of 1 mmol/L of ammonium chloride). These groups were then cultured for a duration of 24 h. To investigate the potential protective effect of Lut on lymphocytes exposed to ammonia, various techniques were employed, including CCK-8 analysis, ultrastructural observation, reagent kit methodology, fluorescence microscopy, and quantitative real-time PCR (qRT-PCR). The findings indicate that Lut has the potential to mitigate the morphological damage of mitochondria caused by ammonia poisoning. Additionally, it can counteract the decline in mitochondrial membrane potential, ATP content, and ATPase activities (specifically Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca/Mg2+-ATPase) following exposure to ammonia in lymphocytes. Lut also has the ability to regulate the expression of genes involved in mitochondrial fusion (Opa1, Mfn1, and Mfn2) and division (Drp1 and Mff) in spleen lymphocytes after ammonia exposure. This regulation leads to a balanced energy metabolism (HK1, HK2, LDHA, LDHB, PFK, PK, SDHB, and ACO2) and provides protection against ammonia poisoning.


Asunto(s)
Pollos , Bazo , Animales , Bazo/metabolismo , Pollos/metabolismo , Amoníaco/metabolismo , Luteolina/metabolismo , Luteolina/farmacología , Cloruro de Amonio/metabolismo , Cloruro de Amonio/farmacología , Metabolismo Energético , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Mitocondrias/metabolismo , Linfocitos/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-37273089

RESUMEN

Salmonella spp. are pathogenic bacteria that cause diarrhea, abortion, and death in yak and severely harm livestock breeding. Therefore, it is vital to identify a probiotic that effectively antagonizes Salmonella. To the best of our knowledge, few prior studies have investigated the efficacy of Enterococcus faecium against Salmonella. Here, we evaluated the enteroprotective mechanism of E. faecium in a mouse Salmonella infection model using hematoxylin-eosin (H&E) staining, quantitative real-time polymerase chain reaction (Q-PCR) technology, microbial diversity sequencing, and metabonomics. Enterococcus faecium inhibited the proinflammatory cytokines IL-1ß, IL-6, TNF-α, and IFN-γ and promoted the anti-inflammatory cytokine IL-10. The Firmicutes/Bacteroidota (F/B) ratio and the abundances of Firmicutes and Akkermansia were significantly higher in the E. faecium than in the Salmonella group. Metabonomics and microbial diversity sequencing disclosed five different metabolites with variable importance in the projection (VIP) > 3 that were characteristic of both the Salmonella and E. faecium groups. Combined omics revealed that Lactobacillus and Bacteroides were negatively and positively correlated, respectively, with cholic acid, while Desulfovibrio was positively correlated with lipids in both the control and Salmonella groups. Desulfovibrio was also positively correlated with lipids in both the Salmonella and E. faecium groups. Enterococcus faecium antagonizes Salmonella by normalizing the abundance of the intestinal microorganisms and modulating their metabolic pathways. Hence, it may efficaciously protect the host intestine against Salmonella infection.

9.
ACS Omega ; 8(10): 9475-9485, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936319

RESUMEN

A mathematical simulation model of a beam pumping system with frequency conversion control is established, considering the influence of the real-time frequency variation on the motion law of a pumping unit, the longitudinal vibration of a sucker rod string, the crankshaft torque, and the motor power. On this basis, the key links such as state space, action space, and reward function are defined by using deep reinforcement learning theory, and an intelligent model to optimize the frequency modulation for a beam pumping system based on deep reinforcement learning is constructed. The simulation and field application results show that the frequency optimization model can significantly reduce the fluctuation amplitude of the polished rod load, crankshaft torque, motor power, and input power of the system, making the operation of the pumping system more stable and energy-saving. More importantly, the model can realize the independent learning and control of the corresponding parameters without manual intervention to ensure the normal operation of the system and improve the level of information and intelligent management of oil wells.

10.
Biol Trace Elem Res ; 201(3): 1432-1441, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35513734

RESUMEN

Manganese (Mn) poisoning can happen in the case of environmental pollution and occupational exposure. However, the underlying mechanisms of Mn-induced teste toxicity and whether mitochondrion and heat shock proteins (HSPs) are involved in toxic effect of Mn on chicken testes remain poorly understood. To investigate this, MnCl2·4H2O was administered in the diet (600, 900, and 1800 mg/kg Mn) of chickens for 30, 60, and 90 days. Electron microscopy and qPCR were performed. Results showed that Mn exposure suppressed dose- and time-dependently HSP40 and HSP60 mRNA levels, meanwhile increased does-dependently HSP27, HSP70, and HSP90 mRNA levels at all three time points under three Mn exposure concentrations. Furthermore, Mn treatment damaged myoid cells, spermatocytes, and Sertoli cells through electron microscopic observation, indicating that Mn treatment damaged chicken testes. In addition, abnormal shapes of mitochondria were found, and mitochondria displayed extensive vacuolation. The increase of HSP90 and HSP70 induced by Mn exposure inhibited HSP40 and stimulated HSP27, respectively, in chicken testes, which needs further to be explored. Taken together, our study suggested that there was toxic effect in excess Mn on chickens, and HSPs and mitochondria were involved in the mechanism of dose-dependent injury caused by Mn in chicken testes. This study provided new insights for Mn toxicity identification in animal husbandry production practice.


Asunto(s)
Pollos , Intoxicación por Manganeso , Masculino , Animales , Pollos/metabolismo , Intoxicación por Manganeso/metabolismo , Testículo , Proteínas de Choque Térmico HSP27/farmacología , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , ARN Mensajero/metabolismo
11.
Lasers Med Sci ; 37(9): 3509-3516, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36066778

RESUMEN

Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.


Asunto(s)
Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas , Osteogénesis/genética , Osteogénesis/efectos de la radiación , Células de la Médula Ósea , Células Madre Mesenquimatosas/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas
12.
Biotechnol Bioeng ; 119(11): 3297-3310, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35923072

RESUMEN

Silicate-substituted calcium phosphate (Si-CaP) ceramics, alternative materials for autogenous bone grafting, exhibit excellent osteoinductivity, osteoconductivity, biocompatibility, and biodegradability; thus, they have been widely used for treating bone defects. However, the limited control over the spatial structure and weak mechanical properties of conventional Si-CaP ceramics hinder their wide application. Here, we used digital light processing (DLP) printing technology to fabricate a novel porous 3D printed Si-CaP scaffold to enhance the scaffold properties. Scanning electron microscopy, compression tests, and computational fluid dynamics simulations of the 3D printed Si-CaP scaffolds revealed a uniform spatial structure, appropriate mechanical properties, and effective interior permeability. Furthermore, compared to Si-CaP groups, 3D printed Si-CaP groups exhibited sustained release of silicon (Si), calcium (Ca), and phosphorus (P) ions. Furthermore, 3D printed Si-CaP groups had more comprehensive and persistent osteogenic effects due to increased osteogenic factor expression and calcium deposition. Our results show that the 3D printed Si-CaP scaffold successfully improved bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, and osteogenic differentiation and possessed a distinct apatite mineralization ability. Overall, with the help of DLP printing technology, Si-CaP ceramic materials facilitate the fabrication of ideal bone tissue engineering scaffolds with essential elements, providing a promising approach for bone regeneration.


Asunto(s)
Osteogénesis , Ingeniería de Tejidos , Apatitas , Regeneración Ósea , Calcio , Fosfatos de Calcio/química , Proliferación Celular , Preparaciones de Acción Retardada , Fósforo , Porosidad , Impresión Tridimensional , Silicatos/química , Silicio , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
13.
J Biomater Appl ; 37(3): 459-473, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35623361

RESUMEN

Silicon-substituted calcium phosphate (Si-CaP) is a promising bioactive material for bone tissue engineering. The mechanism of Si-CaP regulates osteogenic-angiogenic coupling during bone regeneration has not been fully elucidated. In this study, we screened the targets of Si-CaP and osteogenic-angiogenic coupling. 83 common genes were regarded as key targets for Si-CaP regulation of the osteogenic-angiogenic coupling. Then, we performed protein-protein interaction analysis, GO and KEGG enrichment analysis of these 83 targets to further predict their molecular mechanism. Our results showed that Si-CaP treatment could regulate the osteogenic-angiogenic coupling by up-regulating the expression of Toll-like receptor 4 (TLR4), and the phosphorylation of AKT which in turn activating the PI3K/AKT signaling pathway, promoting the expression of RUNX2, OPN, VEGF. In addition, we also found that TLR4 siRNA treatment could block the PI3K/AKT signaling pathway, while inhibiting the promoting effect of Si-CaP. However, although LY294002 can achieve the same inhibitory effect as TLR4 siRNA by blocking the PI3K/AKT signaling pathway, it could not affect the expression of TLR4. This indicates that TLR4 is an upstream activator of PI3K/AKT signaling pathway. These results are highly consistent with the prediction of bioinformatics. In conclusion, we have elucidated the role of TLR4/PI3K/AKT signaling axis in Si-CaP mediated osteogenic-angiogenic coupling for the first time. This study provides new data onto the regulatory role and molecular mechanism of Si-CaP in the process of osteogenic-angiogenic coupling, which strongly supports its wide application for bone tissue engineering.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Receptor Toll-Like 4 , Fosfatos de Calcio/farmacología , Proliferación Celular , Osteogénesis , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , ARN Interferente Pequeño , Transducción de Señal , Silicio/farmacología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
14.
Bioengineered ; 13(4): 10640-10653, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35473508

RESUMEN

Recent studies have shown that the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteogenic lineages can promotes bone formation and maintains bone homeostasis, which has become a promising therapeutic strategy for skeletal diseases such as osteoporosis. Fructus Ligustri Lucidi (FLL) has been widely used for the treatment of osteoporosis and other orthopedic diseases for thousands of years. However, whether FLL plays an anti-osteoporosis role in promoting the osteogenic differentiation of BMSCs, as well as its active components, targets, and specific molecular mechanisms, has not been fully elucidated. First, we obtained 13 active ingredients of FLL from the Traditional Chinese Medicine Systems Pharmacology (TCSMP) database, and four active ingredients without any target were excluded. Subsequently, 102 common drug-disease targets were subjected to protein-protein interaction (PPI) analysis, Gene Oncology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The results of the three analyses were highly consistent, indicating that FLL promoted the osteogenic differentiation of BMSCs by activating the PI3K/AKT signaling pathway. Finally, we validated previous predictions using in vitro experiments, such as alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and western blot analysis of osteogenic-related proteins. The organic combination of network pharmacological predictions with in vitro experimental validation comprehensively confirmed the reliability of FLL in promoting osteogenic differentiation of BMSCs. This study provides a strong theoretical support for the specific molecular mechanism and clinical application of FLL in the treatment of bone formation deficiency.


Asunto(s)
Ligustrum , Células Madre Mesenquimatosas , Osteoporosis , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Simulación del Acoplamiento Molecular , Farmacología en Red , Osteogénesis , Osteoporosis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Reproducibilidad de los Resultados
15.
Adv Clin Exp Med ; 31(4): 359-367, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35068091

RESUMEN

BACKGROUND: During minimally invasive spine surgery, nerve root decompression is challenging due to the anatomical division and uncertainty in lumbar lateral recess (LLR). OBJECTIVES: To evaluate the outcome and safety of foraminoplasty using percutaneous transforaminal endoscopic decompression (PTED) (performed with an aid of a trephine) in the treatment of lumbar lateral recess stenosis (LLRS). MATERIAL AND METHODS: All operations were performed under local anesthesia and in prone position. The puncture point was 10-14 cm away from the midline of the spinous process. One hundred eight individuals with LLRS who underwent PTED from September 2016 to December 2020 in our hospital were enrolled in the study. Visual Analog Scale (VAS) and Oswestry Disability Index (ODI) scores were collected preoperatively after 1 day, 7 days, 1 month and at the final follow-up (June 2021). Low back pain and leg pain were measured using VAS score. Functional outcomes were assessed with ODI and modified Macnab criteria. RESULTS: After the surgery, the VAS score and ODI were statistically significant at all follow-up points compared with the pre-surgery (both p < 0.05). Based on the modified Macnab scores at the final follow-up, the satisfaction rate at postoperative 1 month was 96.3% and the satisfaction rate at postoperative 7 days was 70.38%. A significant difference was observed between the 2 groups (p < 0.05). CONCLUSIONS: Foraminoplasty using PTED performed with a trephine is one of the safe and effective, minimally invasive methods to treat LLRS.


Asunto(s)
Estenosis Espinal , Constricción Patológica/cirugía , Descompresión Quirúrgica/efectos adversos , Descompresión Quirúrgica/métodos , Endoscopía/métodos , Humanos , Vértebras Lumbares/cirugía , Estudios Retrospectivos , Estenosis Espinal/cirugía , Resultado del Tratamiento
16.
Artículo en Inglés | MEDLINE | ID: mdl-34840585

RESUMEN

This study was performed to compare the effectiveness of acupotomy based on the meridian-sinew theory with acupotomy based on the anatomical theory in the treatment of knee osteoarthritis (KOA). A total of 124 patients with knee osteoarthritis were randomized into the meridian-sinew (MS) group (63 patients) and anatomy group (61 patients). In the MS group, acupotomy based on the meridian-sinew theory was performed. In the anatomy group, acupotomy based on anatomy was applied. Patients were subgrouped by TCM Constitutions. The Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index and visual analog scale (VAS) were used to evaluate treatment effectiveness. The results showed that VAS (F = 22.61, p < 0.01) and WOMAC (F = 24.84, p < 0.01) scores declined with time, and there was no significant difference between the two groups nor subgroups (Yang deficiency subgroup, Yin-Yang harmony subgroup, and the subgroup of the others). A total of 5 patients reported 6 cases of the minor adverse effect, and all patients achieved complete recovery without medical intervention. This study indicates that the effectiveness and safety of acupotomy based on the meridian-sinew theory are equivalent to that of acupotomy based on anatomy in KOA treatment.

17.
Aquat Toxicol ; 233: 105775, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33631492

RESUMEN

Cadmium (Cd)-caused water environment pollution has become a matter of concern. Gill is an organ with respiratory and mucosal immune functions, and is also one of the organs directly attacked by pollutants. It was found that excess Cd could cause Cd accumulation and gill injury in carp. However, the mechanism of Cd-caused damage in common carp gills is still unclear. Oxidative stress, immunosuppression, and apoptosis took part in the mechanism of poisoning caused by some harmful substances. The aim of the study was to investigate complex molecular mechanism of apoptotic injury caused by Cd in common carp gills. Hence, in this study, we established a Cd poisoning model to explore whether excess Cd can induce apoptosis through observing histomorphology and apoptotic cells; and determining mineral elements, oxidative stress-related factors, immune-related, and apoptosis-related genes in common carp gills. Fifty-four fish were randomly separated into the control group and the Cd group and were cultured for 45 days. The water of the control group was drinking water and the water of the Cd group was CdCl2-added drinking water (0.26 mg/L Cd). In our results, we found that excess Cd increased Cd level, decreased the levels of essential mineral elements (Cu, Fe, Zn, and Mn), damaged mitochondria, and increased apoptotic cells in common carp gills, meaning that excess Cd caused Cd accumulation and apoptotic injury via mitochondrion in common carp gills. Furthermore, we found that Cd inhibited anti-apoptosis-related gene Bcl-2 and stimulated pro-apoptosis-related genes (JNK, FoxO3a, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3) on 15th, 30th, and 45th days. Above data meant that Cd exposure caused apoptosis via mitochondrion and JNK-FoxO3a-PUMA pathway in common carp gills. In addition, in our experiment, Cd treatment increased oxidants (H2O2 and MDA) and decreased antioxidants (CAT, GPx, GST, SOD, T-AOC, and GSH), indicating that Cd caused oxidative stress via oxidation/antioxidation imbalance. Meanwhile, compared to the control group, T-help 17 (Th17) cell-related factors (IL-17, TNF-α, and RORγ) were up-regulated, regulatory T (Treg) cell-related factors (IL-10 and Foxp3) were down-regulated, and IL-17/IL-10, TNF-α/IL-10, and RORγ/Foxp3 were increased in Cd-exposed group; meaning that excess Cd induced immunosuppression via the imbalance of Th17/Treg cells. Taken together, our findings indicated that JNK-FoxO3a-PUMA pathway and mitochondrion participated in oxidative stress and immunosuppression-mediated apoptosis caused by Cd in common carp (Cyprinus carpio L.) gills. Our data provided new perspectives on the negative effects of heavy metal pollutants on fish.


Asunto(s)
Apoptosis/efectos de los fármacos , Cadmio/toxicidad , Carpas/metabolismo , Branquias/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Factores de Transcripción Forkhead/metabolismo , Branquias/inmunología , Branquias/metabolismo , Peróxido de Hidrógeno/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo/inmunología , Distribución Aleatoria
18.
Sci Adv ; 7(7)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33579708

RESUMEN

Circadian rhythms are an integral part of physiology, underscoring their relevance for the treatment of disease. We conducted cell-based high-throughput screening to investigate time-of-day influences on the activity of known antitumor agents and found that many compounds exhibit daily rhythms of cytotoxicity concomitant with previously reported oscillations of target genes. Rhythmic action of HSP90 inhibitors was mediated by specific isoforms of HSP90, genetic perturbation of which affected the cell cycle. Furthermore, clock mutants affected the cell cycle in parallel with abrogating rhythms of cytotoxicity, and pharmacological inhibition of the cell cycle also eliminated rhythmic drug effects. An HSP90 inhibitor reduced growth rate of a mouse melanoma in a time-of-day-specific manner, but efficacy was impaired in clock-deficient tumors. These results provide a powerful rationale for appropriate daily timing of anticancer drugs and suggest circadian regulation of the cell cycle within the tumor as an underlying mechanism.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacología , Ciclo Celular , División Celular , Ritmo Circadiano/genética , Ratones
19.
J Orthop Translat ; 26: 151-161, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437634

RESUMEN

BACKGROUND: Autogenous bone graft is the gold standard bone grafting substrate available in spinal fusion because of its osteoconductive, osteogenic, and osteoinductive properties. However, several shortcomings including bleeding, infection, chronic pain, and nerve injury are known to be associated with the procedure. Bone tissue engineering has emerged as an alternative therapeutic strategy for bone grafts. New materials have been developed and tested that can substitute for the autogenous bone grafts used in the spinal fusion. The purpose of this study is to evaluate the role of a novel tissue-engineered bone graft with silicon-substituted calcium phosphate (Si-CaP), autogenous fine particulate bone powder (AFPBP), and bone marrow mesenchymal stem cells (BMSCs) using a rabbit posterolateral lumbar fusion model based on bone tissue engineering principles. The application of this graft can represent a novel choice for autogenous bone to reduce the amount of autogenous bone and promote spinal fusion. METHODS: BMSCs from New Zealand white rabbits were isolated and cultured in vitro. Then, BMSCs were marked by the cell tracker chloromethyl-benzamidodialkylcarbocyanine (CM-Dil). A total of 96 New Zealand White rabbits were randomly divided into four groups: (a) AFPBP, (b) Si-CaP, (c) Si-CaP/AFPBP, (d) Si-CaP/AFPBP/BMSCs.The rabbits underwent bilateral posterolateral spine arthrodesis of the L5-L6 intertransverse processes using different grafts. Spinal fusion and bone formation were evaluated at 4, 8, and 12 weeks after surgery by manual palpation, radiology, micro-computed tomography (micro-CT), histology, and scanning electronic microscopy (SEM). RESULTS: The rate of fusion by manual palpation was higher in the Si-CaP/AFPBP/BMSCs group than the other groups at 8 weeks. The fusion rates in the Si-CaP/AFPBP/BMSCs and the AFPBP groups both reached 100%, which was higher than the Si-CaP/AFPBP group (62.5%) (P â€‹> â€‹0.05) and Si-CaP group (37.5%) (P â€‹< â€‹0.05) at 12 weeks. New bone formation was observed in all groups after implantation by radiology and micro-CT. The radiographic and CT scores increased in all groups from 4 to 12 weeks, indicating a time-dependent osteogenetic process. The Si-CaP/AFPBP/BMSCs group showed a larger amount of newly formed bone than the Si-CaP/AFPBP and Si-CaP groups at 12 weeks. Bone formation in the Si-CaP/AFPBP/BMSCs group was similar to the AFPBP group. Histology showed that new bone formation continued and increased along with the degradation and absorption of Si-CaP and AFPBP from 4 to 12 weeks in the Si-CaP, Si-CaP/AFPBP, and Si-CaP/AFPBP/BMSCs groups. At 4 weeks, a higher proportion of bone was detected in the AFPBP group (23.49%) compared with the Si-CaP/AFPBP/BMSCs group (14.66%, P â€‹< â€‹0.05). In the Si-CaP/AFPBP/BMSCs group at 8 weeks, the area percentage of new bone formation was 28.56%, which was less than the AFPBP group (33.21%, P â€‹< â€‹0.05). No difference in bone volume was observed between the Si-CaP/AFPBP/BMSCs group (44.39%) and AFPBP group (45.06%) at 12 weeks (P â€‹> â€‹0.05). At 12 weeks, new trabecular were visible in the Si-CaP/AFPBP/BMSCs group by SEM. CM-Dil-positive cells were observed at all stages. Compared with histological images, BMSCs participate in various stages of osteogenesis by transforming into osteoblasts, chondrocytes, and osteocytes. CONCLUSION: This study demonstrated for the first time that Si-CaP/AFPBP/BMSCs is a novel tissue-engineered bone graft with excellent bioactivity, biocompatibility, and biodegradability. The graft could reduce the amount of autogenous bone and promote spinal fusion in a rabbit posterolateral lumbar fusion model, representing a novel alternative to autogenous bone. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The translational potential of this article lies in that this graft will be a novel spinal fusion graft with great potential for clinical applications.

20.
Ecotoxicol Environ Saf ; 206: 111413, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33022443

RESUMEN

Ammonia (NH3) gas is an atmospheric pollutant, produced from different sources. In poultry houses NH3 is produced from the biological process of liter, manure, and protein composition. It has been well documented that NH3 adversely effects the health of chickens. However, the underlying mechanism of NH3 toxicity on chicken thymus is still unknown. Thymus is an important immune organ, which play a critical role in eliciting protective immune responses to ensure healing process and elimination of harmful stimuli. The results showed that NH3 exposure reduced antioxidant activities and induced oxidative stress in thymus tissues. Histological observation showed normal morphology of chicken thymus in control group. In contrast, increased number of nuclear debris, vacuoles, and cristae break were seen in NH3 affected chickens. Ultrastructural analysis indicated mitochondrial breakdown, disappearance, vacuoles, and chromatin condensation in NH3 treated groups. The mRNA and protein expression of apoptosis related genes were significantly enhanced in the chicken thymus of NH3 affected chickens compared to control group. Moreover, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay results suggested that NH3 exposure increased positive stained nuclei in the chicken thymus. Meanwhile, NH3 exposure reduced the number of CD8+ T-lymphocytes, decreased the adenosine triphosphate (ATPase) activities. The mRNA and protein expression of autophagy, energy metabolism, and mitochondrial dynamics proteins were altered by NH3 exposure. In summary, these results showed that NH3 induced oxidative stress, apoptosis and autophagic cell death (ACD), which could be the possible causes of immune damage and structural impairment in chicken thymus.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Amoníaco/toxicidad , Apoptosis/efectos de los fármacos , Pollos/metabolismo , Metabolismo Energético/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Timo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Autofagia/efectos de los fármacos , Etiquetado Corte-Fin in Situ , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/genética , Timo/inmunología , Timo/metabolismo , Timo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...